Legacy Device: Motorola MC1490

The ML1490 is an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers.

- High Power Gain:
  - 50 dB Typ at 10 MHz
  - 45 dB Typ at 60 MHz
  - 35 dB Typ at 100 MHz
- Wide Range AGC: 60 dB Min, DC to 60 MHz
- 6.0 V to 15 V Operation, Single Polarity Supply
- Operating Temperature Range $T_A = -40^\circ$ to $+85^\circ$C

Note: See Similar ML1350 For Possible Option

MAXIMUM RATINGS ($T_A = +25^\circ$C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>$V_{CC}$</td>
<td>$+18$</td>
<td>Vdc</td>
</tr>
<tr>
<td>AGC Supply</td>
<td>$V_{AGC}$</td>
<td>$V_{CC}$</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input Differential Voltage</td>
<td>$V_{ID}$</td>
<td>$5.0$</td>
<td>Vdc</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>$T_A$</td>
<td>$-40$</td>
<td>to $+85^\circ$C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>$T_{stg}$</td>
<td>$-65$</td>
<td>to $+150^\circ$C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$T_J$</td>
<td>$+150$</td>
<td>$^\circ$C</td>
</tr>
</tbody>
</table>

Pins 3 and 7 should both be connected to circuit ground.

Representative Schematic Diagram

Note: Lansdale lead free (Pb) product, as it becomes available, will be identified by a part number prefix change from ML to MLE.
ELECTRICAL CHARACTERISTICS  \( (V_{CC} = 12 \, V_{dc}, \, f = 60 \, MHz, \, BW = 1.0 \, MHz, \, T_A = 25^\circ C) \)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Figure</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Current Drain</td>
<td>–</td>
<td>( I_{CC} )</td>
<td>–</td>
<td>–</td>
<td>17</td>
<td>mA</td>
</tr>
<tr>
<td>AGC Range (AGC) 5.0 V Min to 7.0 V Max</td>
<td>19</td>
<td>( M_{AGC} )</td>
<td>–60</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Output Stage Current (Sum of Pins 1 and 8)</td>
<td>–</td>
<td>( I_O )</td>
<td>4.0</td>
<td>–</td>
<td>7.5</td>
<td>mA</td>
</tr>
<tr>
<td>Single–Ended Power Gain ( R_S = R_L = 50 , \Omega )</td>
<td>19</td>
<td>( G_P )</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure ( R_S = 50 , \Omega )</td>
<td>19</td>
<td>( N_F )</td>
<td>–</td>
<td>6.0</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>–</td>
<td>( P_D )</td>
<td>–</td>
<td>168</td>
<td>204</td>
<td>mW</td>
</tr>
</tbody>
</table>

**Figure 1.** Unneutralized Power Gain versus Frequency (Tuned Amplifier, See Figure 19)

**Figure 2.** Voltage Gain versus Frequency (Video Amplifier, See Figure 20)

**Figure 3.** Dynamic Range: Output Voltage versus Input Voltage (Video Amplifier, See Figure 20)

**Figure 4.** Voltage Gain versus Frequency (Video Amplifier, See Figure 20)
Figure 5. Voltage Gain and Supply Current versus Supply Voltage (Video Amplifier, See Figure 20)

Figure 6. Typical Gain Reduction versus AGC Voltage

Figure 7. Typical Gain Reduction versus AGC Current

Figure 8. Fixed Tuned Power Gain Reduction versus Temperature (See Test Circuit, Figure 19)

Figure 9. Power Gain versus Supply Voltage (See Test Circuit, Figure 19)

Figure 10. Noise Figure versus Frequency
Legacy Applications Information

Figure 11. Noise Figure versus Source Resistance

NF, NOISE FIGURE (dB)

R_s, SOURCE RESISTANCE (Ω)

V_CC = 12 Vdc

f = 30 MHz

f = 60 MHz

f = 105 MHz

Figure 12. Noise Figure versus AGC Gain Reduction

NF, NOISE FIGURE (dB)

G_R, GAIN REDUCTION (dB)

f = 30 MHz

BW = 1.0 MHz

Test circuit has tuned input providing a source resistance optimized for best noise figure.

Figure 13. Harmonic Distortion versus AGC Gain Reduction for AM Carrier (For Test Circuit, See Figure 14)

HARMONIC DISTORTION IN DETECTED MODULATION (%)

G_R, GAIN REDUCTION (dB)

f = 10.7 MHz

Modulation: 90% AM, f_m = 1.0 kHz

Load at Pin 8 = 2.0 kΩ

E_O = peak-to-peak envelope of modulated 10.7 MHz carrier at Pin 8

E_O = 2400 mVpp

240 mVpp

760 mVpp

Figure 14. 10.7 MHz Amplifier Gain 55 dB, BW 100 kHz

- L1 = 24 turns, #22 AWG wire on a T12–44 micro metal Toroid core (~124 pF)
- L2 = 20 turns, #22 AWG wire on a T12–44 micro metal Toroid core (~100 pF)
Legacy Applications Information

Figure 15. $S_{11}$ and $S_{22}$, Input and Output Reflection Coefficient

Figure 16. $S_{11}$ and $S_{22}$, Input and Output Reflection Coefficient

Figure 17. $S_{21}$, Forward Transmission Coefficient (Gain)

Figure 18. $S_{12}$, Reverse Transmission Coefficient (Feedback)
## Legacy Applications Information

### Figure 19. 60 MHz Power Gain Test Circuit

![Circuit Diagram](image1)

- L1 = 7 turns, #20 AWG wire, 5/16" Dia., 5/8" long
- L2 = 6 turns, #14 AWG wire, 9/16" Dia., 3/4" long
- C1, C2, C3 = (1–30) pF
- C4 = (1–10) pF

### Figure 20. Video Amplifier

![Circuit Diagram](image2)

### Figure 21. 30 MHz Amplifier

*(Power Gain = 50 dB, BW  1.0 MHz)*

![Circuit Diagram](image3)

- L1 = 12 turns, #22 AWG wire, 1/4" ID Air Core, (T37–6 micro metal or equiv).
- T1: Primary Winding = 15 turns, #22 AWG wire, 1/4" ID Air Core
- Secondary Winding = 4 turns, #22 AWG wire,
  Coefficient of Coupling $\approx 1.0$

### Figure 22. 100 MHz Mixer

![Circuit Diagram](image4)

- L1 = 5 turns, #16 AWG wire, 1/4", ID Dia., 5/8" long
- L2 = 16 turns, #20 AWG wire on a Toroid core, (T44–6).

### Figure 23. Two–Stage 60 MHz IF Amplifier (Power Gain  80 dB, BW  1.5 MHz)

![Circuit Diagram](image5)

- T1: Primary Winding = 15 turns, #22 AWG wire, 1/4" ID Air Core
- Secondary Winding = 4 turns, #22 AWG wire, Coefficient of Coupling $\approx 1.0$

- T2: Primary Winding = 10 turns, #22 AWG wire, 1/4" ID Air Core
- Secondary Winding = 2 turns, #22 AWG wire, Coefficient of Coupling $\approx 1.0$
DESCRIPTION OF SPEECH COMPRESSOR

The amplifier drives the base of a PNP transistor operating common-emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level $V_r$. Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than $V_r = 7.0 \text{ V}$. The resulting output is filtered by $C_x$, $R_x$.

$R_x$ controls the charging time constant or attack time. $C_x$ is involved in both charge and discharge. $R_x$ (the 150 kΩ and input resistance of the emitter–follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making $R_x$ small and $R_2$ large. (A Darlington emitter–follower may be needed if extremely slow decay times are required.)

The emitter–follower Q2 drives the AGC Pin 5 of the ML1490PP and reduces the gain. $R_3$ controls the slope of signal compression.

<table>
<thead>
<tr>
<th>Table 1. Distortion versus Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100 Hz</td>
</tr>
<tr>
<td>300 Hz</td>
</tr>
<tr>
<td>1.0 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
</tr>
</tbody>
</table>

Notes:
1. Decay = 300 ms
2. $C_x = 7.5 \mu F$
3. Decay = 20 ms
4. $C_x = 0.68 \mu F$
5. $R_x = 0$ (Short)
6. $R_x = 1.5 \text{ kΩ}$

Notes 1 and 2
Notes 3 and 4

**Figure 24. Speech Compressor**

[Diagram of the speech compressor circuit]
**OUTLINE DIMENSIONS**

P DIP = PP
(ML1490PP)
PLASTIC PACKAGE
CASE 626–05
ISSUE K

NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>MAX</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.40</td>
<td>10.18</td>
<td>0.370</td>
<td>0.400</td>
</tr>
<tr>
<td>B</td>
<td>6.10</td>
<td>6.60</td>
<td>0.240</td>
<td>0.260</td>
</tr>
<tr>
<td>C</td>
<td>3.34</td>
<td>4.40</td>
<td>0.155</td>
<td>0.175</td>
</tr>
<tr>
<td>D</td>
<td>0.38</td>
<td>0.51</td>
<td>0.015</td>
<td>0.025</td>
</tr>
<tr>
<td>F</td>
<td>1.02</td>
<td>1.78</td>
<td>0.040</td>
<td>0.070</td>
</tr>
<tr>
<td>G</td>
<td>2.54</td>
<td>6.45</td>
<td>0.100</td>
<td>0.165</td>
</tr>
<tr>
<td>H</td>
<td>0.76</td>
<td>1.27</td>
<td>0.030</td>
<td>0.050</td>
</tr>
<tr>
<td>J</td>
<td>0.20</td>
<td>0.30</td>
<td>0.008</td>
<td>0.012</td>
</tr>
<tr>
<td>K</td>
<td>2.92</td>
<td>3.43</td>
<td>0.110</td>
<td>0.130</td>
</tr>
<tr>
<td>L</td>
<td>7.62</td>
<td>9.52</td>
<td>0.300</td>
<td>0.375</td>
</tr>
<tr>
<td>M</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>N</td>
<td>0.76</td>
<td>1.01</td>
<td>0.030</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.